Os processos de produção de estampos exigem tecnologia de ponta em relação aos softwares de produção e uma das principais queixas de quem se utiliza desse tipo de ferramenta é a utilização de softwares distintos para anteder a todas as fases do processo.

Saiba mais sobre projeto de estamos: como garantir a confiabilidade no seu processo de ponta a ponta, já que esse fator é fundamental para que o processo dos projetos de estampos alcance alta qualidade é necessário que as superfícies também ganhem em qualidade a cada dia, por isso é importante encontrar um software único dedicado, de ponta a ponta para o processo.

Chamamos de estampagem os processos ou operações que têm como finalidade produzir peças geometricamente marcadas. O projeto de estampos é feito, portanto, a partir de um processo de deformação do metal, ou deformação plástica do metal.

Estampos são produzidos a partir de peças básicas como cabeçote, espigas, guias e também de peças variáveis que são as que dão a forma geométrica desejada à estampagem.

É também possível fazer o processo de estampagem a frio. Nesse caso o projeto é chamado de conformação mecânica e nele existe uma chapa plana que passa a ser submetida a diversos cortes para que adquira nova forma geométrica.

 

 

Software de ponta a ponta, o que pode oferecer no projeto de estampos e até a fabricação CNC ?

Se você precisa saber mais sobre projeto de estampo: como garantir a confiabilidade no seu processo de ponta a ponta, veja o que esse tipo de ferramenta pode oferecer em cada etapa da produção:

 

Na etapa do orçamento, o software que realiza o processo completo de ponta a ponta, totalmente automatizado fornece desenvolvimento do produto, etapa do blank e a tira, baseado na especificação do material escolhido pelo cliente e na espessura necessária. A força utilizada pelos cilindros de nitrogênios, molas, quantidade de aço, dados de tempo de usinagem e eletroerosão a fio também podem ser orçados com maior precisão para evitar erros de cálculo.

 

  • Simulação CAE para otimizar o tempo de aprovação dos projetos de estampos

CAE é a abreviação para Engenharia Auxiliada por Computador que significa utilizar softwares para simular desempenho. Quanto mais precisa for a simulação, menor a possibilidade de erros de orçamentos e de necessidade de retrabalho.

A simulação CAE envolve etapas como otimização dos produtos, economia, processos e ferramentas de manufatura.

A maioria dos processos de CAE abrange etapas como pré-processamento, solução e etapas após o processo. O pré é a etapa em que os engenheiros estão elaborando o projeto de estampo, ou seja, modelando a geometria da peça através de representações. Nessa fase, o software que utiliza simulação CAE é muito importante para que não haja falhas.

É também na pré etapa que as propriedades físicas do objeto são definidas, o ambiente também pode ser simulado e as cargas que serão aplicadas ao objeto final também precisam ser consideradas.

Na fase do processo em si e na pós produção, os resultados dos modelos são apresentados e poder ser avaliados e modificados de acordo com a necessidade e de acordo com as necessidades de cada cliente e produto.

 

  • Construção da ferramenta de estampo

A construção, no software ponta a ponta é feita através de usinagem e apresenta módulos de automação, como AutoDrill e eletroerosão a fio, dentre outros.

 

  • Tryout do ferramental de estampos

O Tryout é zero, no entanto, com a adição de Medição de processos antes do tryout é possível evitar que uma peça ruim seja testada, já que ele permite a verificação e o descarte antecipado. Dessa forma pode-se economizar no aluguel da prensa e manutenção.

 

  • Medição

Para a medição, o software permite a inspeção em processo, sem tirar a peça da máquina CNC, por exemplo.

Projetos de Estampos

Assertividade no projeto de estampos

Se o seu intuito é encontrar uma solução para problemas específicos do seu negócio, utilizar um software específico pode ser a melhor resposta para isso. Optando por essa solução, esse sistema será inteiramente dedicado à sua empresa, aumentando e facilitando a otimização.

Sendo assim, um dos principais benefícios de um software específico para projetos de estampos é a grande abrangência que ele atinge. Em todos os processos, diferenciais e rotinas da empresa serão incluídos no sistema.

Sendo assim, esse modelo de sistema trará familiaridade para sua equipe, cada vez mais aumentando e melhorando o rendimento, desenvolvimento e desempenho de toda a equipe. Esse é um dos fatores chave para quem pretende trabalhar com projetos de estampos: veja como garantir a confiabilidade no seu processo de ponta a ponta!

Segurança no tryout do ferramental

Quando você opta por desenvolver um software específico para o seu negócio, uma solução certeira é adquira simultaneamente. As necessidades de sua empresa são trabalhadas de forma particular.

Diferente de softwares genéricos, os específicos possuem um alto nível de segurança diferenciado. Mesmo sendo hospedado virtualmente, o software especifico possui um banco de dados e não será compartilhado.

Retorno Financeiro (ROI) na estamparia

Uma das maiores preocupações de um gestor é com os investimentos feitos na empresa. Dessa forma, a questão “preço” sempre vem com uma enorme importância. Quando comparam custos e vantagens de um investimento dessa forma.

Um investimento em um software genérico pode parecer vantajoso no início, em razão do baixo custo. No entanto, é bem provável que o mesmo não consiga cumprir todas as necessidades específicas da sua empresa.

Esse fator pode vir a acarretar prejuízos futuros, de uma maneira que force a sua empresa a adquirir um software mais especializado para o seu nicho de negócios. Portanto, para conhecer um projeto de estampos: como garantir a confiabilidade no seu processo de ponta a ponta, não perca de vista o retorno financeiro.

De fato, os softwares específicos possuem um custo um pouco mais alto em relação aos softwares genéricos. Entretanto, ele servirá melhor a sua empresa e seu projeto, servindo todas as necessidades particulares que ela possui.

O custo do projeto, utilizando esse tipo de software especializado em projetos de estampos será para uma solução certeira que atenderá todas as suas prioridades, e com certeza, vai lhe trazer um alto retorno financeiro.

O que o software certo pode oferecer

Um software ponta a ponta pode oferecer até 70% de redução do tempo no orçamento e garante que quando a ferramenta começa o orçamento já esteja aprovado.

Além disso, na simulação CAE há também uma redução de até 70% , o que implica em até 5% do tempo total. Lembrando que isso implica em uma redução alta de custos, já que a simulação CAE custa aproximadamente R$ 800,00 reais por hora!

Agora que você sabe as vantagens e desvantagens em se obter um software único CAD/CAM/CAE de ponta a ponta, dedicado a ferramentaria e com muitos recuros especializados em ganhar tempo em todo fluxo dos projetos de estampos, não perca mais tempo, contate FIT.

Muitas tarefas de projeto e preparação de ferramentais não precisam ser manuais e repetitivas.

O CIMATRON Die Design, feito pela 3D Systems para maximizar a produtividade do processo de projeto de estampos, oferece uma solução completa e comprovada para os projetistas e fabricantes de ferramentas que podem agilizar atividades que vão desde a cotação até a programação NC.

Pensando nisso, a FIT solucionará as suas dúvidas sobre estampos no webinar Automatizando os projetos de estampos, apresentado pela consultora Amanda Alcantara e pelo técnico em estampos Dimas Xavier.

Neste webinar, você verá:
  • Desdobramento e desenvolvimento da tira no produto Damper bracket (apoio de assento) Material: JSC 270
  • Análises de Springback, Ponto de Ruptura e Espessuramento por simulação CAE diretamente por estágio
  • Implantação do catálogo de bases, conjunto de punção e matriz e geração de relatório orçamentário

Quando? Quinta-feira, 24 de setembro de 2020, das 10h as 11h.

Você é nosso convidado!

O que é estampagem nós já vimos em outro artigo por aqui, mas só para lembrar o conceito, Estampagem é o processo de fabricação que através da operação de prensagem, corta ou deforma plasticamente chapas metálicas, gerando um produto final com ótimo acabamento.

O processo de estampagem é muito útil em indústrias com produção seriada e com grandes lotes como a automotiva e de eletrodomésticos, por exemplo, e são fabricadas no setor de ferramentaria.

Como em qualquer processo de fabricação, além da matéria-prima, é necessário um conjunto de máquina e ferramenta. No caso da estampagem, a matéria-prima deve se restringir a materiais que possam adquirir o formato de chapas ou fitas como o aço, cobre, alumínio, níquel e zinco.

A máquina utilizada é a prensa que pode adotar tamanhos diversos para atender às necessidades da produção e assim como a prensa tem suas características, a matriz que molda o produto tem o perfil especificado e bem detalhado com o formato e tamanho dimensionados.

As ferramentas podem ser classificadas em três grupos segundo a sua utilização, são elas: Estampo Progressivo, Tandem e Transfer.

Utilização de ferramentas no processo de estampagem

Como é comum em qualquer projeto, alguns fatores devem ser considerados para a concepção de uma ferramenta de estampar, entre elas estão: Dimensão, o material e sua espessura, a qualidade pretendida na peça, cadência e por aí vai uma lista de considerações. Sendo assim, podemos agrupar as ferramentas em três grupos:

Estampo Progressivo

Nesta categoria a prensa é alimentada com a matéria-prima através de um processo automático por bobinas ou do processo manual com tiras de matéria-prima. A chapa é disposta entre a matriz superior e inferior e é alvo de sucessivas operações de corte, dobragem ou estampagem até a obtenção de um produto final. Nesta categoria, acontece uma sequência de produção onde o material avança para a etapa seguinte conforme cada operação finalizada. Em alguns casos, na mesma estação, a peça pode sofrer operações sucessivas.

O comprimento do passo ou do alimentador define a velocidade de avanço da chapa para evitar erros de posicionamento. Este processo oferece:

  • Variedade de perfis em um único processo;
  • Minimização do manuseamento do material;
  • Eficiência e fabricação de baixo custo;
  • Produção de alta velocidade;
  • Operação em baixas tolerâncias;
  • Produção múltipla por operação, podendo atingir entre 600 a 2000 peças por hora.

Estampagem Transfer

Diferentemente do Estampo Progressivo, a categoria Transfer é composta por várias ferramentas que executam as operações individualmente. Elas são montadas em sequência sobre uma base comum e as peças transitam de uma ferramenta para outra, geralmente essa movimentação acontece através de sistemas automáticos ou robôs equipados com garras mecânicas ou pneumáticas.

Este sistema foi desenvolvido para fabricar componentes de forma totalmente automatizada, ou seja, sem a necessidade da utilização de mão de obra. A imagem abaixo ilustra a aplicação dos braços robotizados, responsáveis pelo manuseio total dos componentes estampados.

Créditos da imagem: http://www.mckautomacao.com.br/

Confira algumas das vantagens do processo transfer :

  • Alto rendimento e produtividade;
  • Ocupação reduzida de área;
  • Indicado para processos com alto volume de produção e várias operações sucessivas de conformação e/ou estampagem;
  • Substitui com vantagens os sistemas tradicionais de Estampos Progressivos: menor custo e maior flexibilidade;
  • Substituição do operador proporcionando qualidade, produtividade e extinguindo problemas de segurança e saúde, imunizando a empresa de processos trabalhistas.

Estampagem Tandem

Uma linha de prensas Tandem, como o próprio nome sugere, é constituída por uma distribuição simples de prensas separadas entre si por uma distância comum. Neste tipo de estampagem, existe uma prensa e uma ferramenta individual para cada operação do processo de fabricação. Finalizada uma operação, a peça é movimentada para a prensa seguinte, até ao final da linha onde se obtém o produto final. A ilustração a seguir demonstra a movimentação realizada por braços automatizados de robôs, que não necessitam da interferência humana durante a operação.

Créditos da imagem: http://www.mckautomacao.com.br/

As vantagens do sistema tandem são:

  • São sistemas com configuração mais complexa;
  • Ideal para processos com alto volume de produção e várias operações sucessivas de conformação e/ou estampagem;
  • Substitui com vantagem os sistemas tradicionais de Transfer por barras longitudinais: menor custo e maior flexibilidade;
  • Substituição do operador proporcionando qualidade, produtividade e extinguindo problemas de segurança e saúde, imunizando a empresa de processos trabalhistas.

Embora o investimento em ferramentas e instalação do projeto de estampagem possam parecer altos, o custo de produção e mão-de-obra é reduzido, proporcionando maior lucratividade.

 

Manutenção das prensas dos estampos

É claro que qualquer equipamento para se manter funcionando com perfeitas condições de qualidade e segurança, devem passar pela manutenção preventiva. Entre os itens que devem ser observados e substituídos de acordo com a necessidade nas prensas de sistema Progressivo, Transfer e Tandem são:

  • Rolamentos;
  • Correias;
  • Peças e componentes mecânicos e elétricos que possam estar danificados;
  • Tratamento químico das peças;
  • Instalação de CLP e IHM;
  • Instalação pneumática;
  • Motores e redutores;
  • Castilhos e colunas;
  • Estrutura (placa inferior e superior);
  • Elastômeros;
  • Molas helicoidais e Molas a gás;
  • Carros deslizantes e Carros aéreos.

 

Normas de segurança

Se você despertou o interesse por implementar este processo em sua empresa, é importante lembrar que todos os equipamentos devem estar em conformidade com as Normas de Segurança NR12, PPRPS e NBR13930. São elas que definem os requisitos e as medidas técnicas de segurança, garantindo a integridade física dos operadores, do maquinário e de outras pessoas que possam ficar expostas a possíveis perigos.

As normas devem ser aplicadas em unidades fabris desde a implementação de prensas simples até de alta complexidade e também de dispositivos auxiliares.

Você sabe como funciona o processo de estamparia de metais?

Imagine produzir geometrias próprias e detalhadas utilizando apenas uma chapa, uma prensa e poucos segundos. Sem soldas, sem cavacos, sem bagunça e com tempo recorde. Isso é Estampagem!

Estampagem é o processo de fabricação, para estamparia de metais, que através da operação de prensagem, corta ou deforma plasticamente chapas metálicas, gerando um produto final com ótimo acabamento. O processo é muito útil em indústrias com produção seriada e com grandes lotes como a automotiva e de eletrodomésticos, por exemplo.

Materiais mais utilizados na estampagem de metais

É claro que não são todos os materiais que podem ser utilizados na estampagem, pode-se utilizar apenas os que são capazes de adquirir o formato de chapas ou fitas, os principais são:

  • Aço
  • Cobre
  • Alumínio
  • Níquel
  • Zinco

Apesar deste tipo de fabricação ter um alto custo de ferramental, inviabilizando a aplicação para pequenos lotes, as vantagens o tornam muito atrativo para várias indústrias, isso porque podem oferecer:

  • Alta produção
  • Baixo custo
  • Ótimo acabamento
  • Maior resistência das peças devido ao encruamento do material
  • Uniformidade da produção: Qualidade

estampagem de metal de forma manual, sem automação

 

A estampagem tem suas vertentes e cada qual tem sua aplicação específica, entre elas estão: Corte, Conformação Mecânica, Repuxo e Estampagem Profunda. Em todos os casos a prensa exerce pressão na chapa que apoiada em uma matriz define o perfil da peça.

Corte na estampagem

O esforço de compressão exercido pela prensa é convertido em esforço de cisalhamento, cortando ou perfurando o material, produzindo assim, perfis em peças planas.

Algumas peças geralmente produzidas por este meio de fabricação são: Componentes de informática, gabinetes, réguas, painéis de fotos, arruelas ou discos planos.

Conformação Mecânica

Nesta categoria, o material não precisa necessariamente sofrer ruptura, entre as operações estão o dobramento e encurvamento, enrolamento, nervuramento e conformação de tubos.

Exemplos de aplicação de conformação mecânica são a produção de peças rasas como componentes da carroceria de automóveis como capô e portas.

porta automotiva estampada

Repuxo no estampo

Durante esta operação, o material sofre uma conformação mais intensa de modo que o material sofre estiramento, ou seja, tem sua espessura diminuída para que possa ser moldada no perfil desejado. É importante lembrar que para ser submetido a repuxo, o material deve atender à algumas especificações para que não se rompa. Um exemplo de aplicação são as cubas das pias de cozinha.

Estampagem profunda

Seguindo a mesma linha de raciocínio da Estampagem Rasa, na Estampagem Profunda o copo é mais profundo do que a metade do seu diâmetro. Um exemplo de aplicação dessa estampagem é na produção de panelas.

Fine-Blanking ou Corte Fino

Corte fino e Conformação: é a tecnologia para a produção econômica de peças com precisão de corte.

O processo de corte fino oferece tecnologia de ponta para a produção econômica de peças com precisão de corte e superfícies livres de arestas ou rebarbas (estouro de corte). As peças são produzidas em uma prensa com três forças ativas e em ferramentas de corte com o mínimo de folga, em ângulo reto com superfícies cortantes que não deixam rebarbas ou arestas e são extremamente planas. Elas podem ser utilizadas sem qualquer necessidade de retrabalho ou segunda operação ou processo.

No processo de corte fino, as peças são produzidas em uma prensa com três forças ativas e em ferramentas de corte com o mínimo de folga, em ângulo reto com superfícies cortantes que não deixam rebarbas ou arestas e são extremamente planas. Isso permite que elas sejam utilizadas sem qualquer necessidade de retrabalho ou segunda operação ou processo.

O desenvolvimento de projetos

É claro que para produzir as peças com os perfis desejados, você vai precisar de todo o conjunto mecânico e não somente da matriz em si. Os Estampos são compostos de elementos comuns (Base, cabeçote, colunas de guia e espiga) e de elementos específicos, responsáveis pelo perfil da peça que será produzida (matrizes e punções).

Matrizes e Punções de estampo

Matrizes e Punções são os elementos fundamentais do ferramental para estampo. Na matriz está recortado o formato negativo do perfil da peça e fixada rigidamente sobre uma base reforçada, formando um conjunto sólido, cujo material é de alta qualidade e acabamento fino. Algumas características que devem ser consideradas no projeto das matrizes de corte são:

  • Ângulo de saída para facilitar o escoamento do material cortado;
  • Folga entre punção e a matriz que é responsável pelo corte da peça desejada;
  • Não devem ter cantos vivos ou raios de arredondamento muito pequenos;
  • Não devem conter variações bruscas de secções nem furos cegos.

Material para Matrizes e Punções

O material para esse ferramental deve ter algumas características específicas, são elas:

  • Devem ser fabricados a partir de ações para trabalho a frio (SAE D-2, D-6, O-1 e S-1);
  • Elevada resistência mecânica;
  • Dureza elevada após tratamento térmico;
  • Resistência ao desgaste;
  • Resistência ao choque;
  • Boa temperatura e usinabilidade;
  • Difícil deformação durante tratamento térmico;
  • A dureza deve ser estar entre 56 a 62 HRC após serem temperadas e revenidas.

 

Outros fatores que devem ser respeitados durante o projeto das matrizes são a fixação e espessura das matrizes.

Definição da Espessura da Matriz

A força proveniente da punção se distribui ao longo dos gumes de corte da matriz, por isso ela precisa ter a espessura adequada para suportar os impactos. Para isso, basta utilizar a equação abaixo para determinação da espessura correta:

E= ∛(F-3)

E= Espessura

F = Força de corte

Se você utilizar para o cálculo a Força de Corte em toneladas, a unidade de medida do resultado da espessura será em centímetros. Caso optar por utilizar a Força em kgf, a unidade de medida do resultado será em milímetros.

Para definir a Força de Corte, basta utilizar a seguinte equação:

Fc≥p.e.tc

Fc = Força de corte [kg]

p = Perímetro da peça a ser cortada [mm]

e = espessura da chapa [mm]

tc = tensão resistente de cisalhamento ou corte [kg/mm²] (conforme cada material)

Fixação

Para que possa ser montada adequadamente no porta-matriz, os tipos de fixação são:

  • Fixação por pressão: <= 1.6mm
  • Fixação por parafuso e extrator fixo: >= 1.6mm

Usinagem da Matriz de estampo

A matriz deve ser usinada com extrema estabilidade dimensional, uma ótima opção é o aço VC-131 que é conhecido como indeformável, com resistência à abrasão e máxima estabilidade do gume.

Para a usinagem, o processo de eletroerosão a fio é o mais indicado por permitir usinar geometrias complexas. Através da eletroerosão, um fio de latão eletricamente carregado atravessa a peça submersa em água deionizada, em movimentos constantes, provocando descargas elétricas entre o fio e a peça, as quais cortam o material. Para permitir a passagem do fio é feito previamente um pequeno orifício no material a ser usinado.

A programação do perfil é feita através de sistemas computadorizados, permitindo a obtenção de perfis complexos e precisos.

É importante lembrar que o tratamento térmico tem um papel fundamental, a matriz deve ser submetida à têmpera entre 800°C e 850°C com resfriamento em óleo.

estamparia de metais, estampo

Tryout

Quando modificações ou implementações de processos são realizadas, é importante não esquecer do famoso tryout, que nada mais é que uma série de testes que comprovam a eficiência do novo procedimento.

Durante o tryout acontece a simulação do processo normal de produção e são observadas as características do produto e processo, como ergonomia, tempo de ciclo e qualidade. Apenas após a comprovação testada e aprovada de que o processo é capaz de gerar um produto adequado, é feita a liberação para iniciar a produção sequenciada.

Caso conformidades sejam encontradas, o processo deve ser adaptado e readequado para cumprir todos os pré-requisitos normativos.

A Engenharia Simultânea ou Engenharia Concorrente, surgiu com o avanço da sociedade trazendo novas tecnologias e produtos cada vez mais complexos resultando no lead time para desenvolvimento de produtos. Ocorre então o aumento da competitividade empresarial, com produtos lançados cada vez mais rápido, espaços de tempo curto para a grande complexidade de projetos. Então no início dos anos 80, surgiu uma das soluções que foram adotadas por várias empresas, foi o aumento do paralelismo das atividades de desenvolvimento, ou seja, tornar mais próximo possível as atividades realizadas para criação de produtos diferentes. Na maior parte esses processos eram realizados somente nos pós aprovação do novo produto. Essas atividades foram reformuladas para que pudessem ser iniciadas antes mesmo do ciclo que o produto passa antes de ser aprovado.

Foi então em 1982 que a DARPA (Defense Advanced Research Project Agency) iniciou um estudo sobre maneiras de aumentar paralelismo das atividades de desenvolvimento de produtos. Esse trabalho resultou no termo conhecido como Engenharia Simultânea, e a partir desse estudo foram realizados novos estudos que vieram para ajudar no desenvolvimento desse termo e de seus métodos.

DEFINIÇÃO DE ENGENHARIA CONCORRENTE

Na publicação do seu estudo, em 1988, a DARPA definiu engenharia simultânea da seguinte forma:

"Engenharia Simultânea é uma abordagem sistemática para o desenvolvimento integrado e paralelo do projeto de um produto e os processos relacionados, incluindo manufatura e suporte. Essa abordagem procura fazer com que as pessoas envolvidas no desenvolvimento considerem, desde o início, todos os elementos do ciclo de vida do produto, da concepção ao descarte, incluindo qualidade, custo, prazos e requisitos dos clientes." (WINNER et al., 1988 apud PRASAD, 1996).

Depois da publicação da DARPA sobre Engenharia simultânea, surgiram diversas outras definições. O que tornou o conceito mais extensivo, incluindo cooperação entre todos os envolvidos no desenvolvimento, incluindo recursos computacionais (CAD; CAE; CAM; CAPP; PDM) e aplicação de metodologias.

Todas as definições estão corretas, porem cada empresa deve pensar no modelo que adéqua melhor a sua situação atual e pensar em qual seus escopos de projeto.

USO DA ENGENHARIA SIMULTÂNEA

A engenharia simultânea ou concorrente pode ser usada para realização de projeto para manufatura (DFM) e de projeto para montagem (DFA). Quando o desejo é realizar a integração do planejamento do processo de produção ao produto, visando reduzir custos e simplificar a fabricação de um componente, peça ou sistema, tem-se então o projeto voltado para a manufatura (DFM).

As regras das diretrizes da DFM, aplicadas ao projeto, estão listadas abaixo:

Os objetivos do projeto voltado para montagem (DFA) são:

COMO AS FERRAMENTAS CAD, CAE, CAM E CAPP AUXILIANDO NA ENGENHARIA SIMULTÂNEA

Sem Engenharia Simultânea:

Com Engenharia Simultânea:

Apenas aplicar as soluções de engenharia não quer dizer necessariamente melhoria no ciclo de desenvolvimento em engenharia simultânea, sem a devida gestão os resultados são apenas aumento de produção nas operações separadas, existe a necessidade de fazer a empresa “conversar” entre setores e etapas da produção. Desta forma não resultando em ganhos significantes, pois o retrabalho e perdas vai continuar existindo, devido a erros de projeto.

A integração dessas ferramentas tecnológicas (CAD, CAE, CAM e CAPP) proporciona a interação entre engenharia e projeto – projeto e processos, respectivamente, facilitando a comunicação entre os membros da equipe de projeto.

As informações são melhores aproveitadas do projeto para a engenharia e para o processo, o que permite realizar a simulação mais rapidamente e definir o processo de acordo com as alterações realizadas nas simulações. O uso desse sistema permite a integração, facilitando modificações pontuais na engenharia, no projeto e no processo, mantendo o trabalho que já foi realizado anteriormente.

A integração feita via features viabiliza a automação ou a semi automação das modificações entre as etapas do ciclo de desenvolvimento. Pacotes de CAE, CAD ou CAPP que possuam sistemas especialistas do tipo DFMA são capazes de fazer contínua avaliação do projeto desde a sua fase de concepção, por meio de mecanismos de avaliação da manufaturabilidade. A automação e a integração, dentro do escopo da engenharia simultânea, resultam em melhores desempenhos individuais nas atividades do ciclo de desenvolvimento e em reduções de tempo e de custo no processo projetivo como um todo.

A ENGENHARIA CONCORRENTE E SIMULTÂNEA

A Engenharia Simultânea é um plano industrial que tem sido utilizada para reduzir o tempo de desenvolvimento de produtos, unir esforços de diversos profissionais com diferentes especialidades, que trabalham em grupos de forma cooperativa, sendo que para sua implantação torna-se necessário o entendimento a fundo das ferramentas que integram a estrutura do desenvolvimento de produto, fazendo com que seu lead time seja sensivelmente reduzido.

As empresas que buscam sobrevivem no mercado atual tem que ser flexíveis para que possam se adaptar as mudanças que estão ocorrendo e assim conseguirem inserir novos produtos no mercado de forma rápida, mas não deixando a qualidade de lado. Para ter sucesso no mercado o seu produto precisa atender as necessidades e expectativas do cliente.

A maior vantagem é competitiva, levando em consideração que com a engenharia simultânea a empresa consegue produzir produtos cada vez melhores, mas também reduzir significativamente o seu tempo de desenvolvimento. Fazer com que todas as etapas da produção interajam entre si é essencial para a empresa ter sucesso e executar com maestria a engenharia concorrente ou simultânea.

FIT Tecnologia | SP (HQ)
Rua Maria Carmem Rodrigues Saker, 90
Boa Vista | Sorocaba | São Paulo
Brasil - CEP 18087-081
(+55) (15) 3199-0554
FIT Tecnologia | RS
Rua José Tovasi, 417 | Cruzeiro 
Caxias do Sul | Rio Grande do Sul
Brasil - CEP 95010-040
(+55) (54) 3196-2199
Horário: de segunda à sexta, das 8 às 12h e das 13 às 17h, exceto feriados.
CIMATRONFIKUSCIMCOABINFER-selo-associacao-brasileira-ferramentarias
© 2021 Fit Tecnologia. Todos os direitos reservados.
crosschevron-down