Os processos de produção de estampos exigem tecnologia de ponta em relação aos softwares de produção e uma das principais queixas de quem se utiliza desse tipo de ferramenta é a utilização de softwares distintos para anteder a todas as fases do processo.

Saiba mais sobre projeto de estamos: como garantir a confiabilidade no seu processo de ponta a ponta, já que esse fator é fundamental para que o processo dos projetos de estampos alcance alta qualidade é necessário que as superfícies também ganhem em qualidade a cada dia, por isso é importante encontrar um software único dedicado, de ponta a ponta para o processo.

Chamamos de estampagem os processos ou operações que têm como finalidade produzir peças geometricamente marcadas. O projeto de estampos é feito, portanto, a partir de um processo de deformação do metal, ou deformação plástica do metal.

Estampos são produzidos a partir de peças básicas como cabeçote, espigas, guias e também de peças variáveis que são as que dão a forma geométrica desejada à estampagem.

É também possível fazer o processo de estampagem a frio. Nesse caso o projeto é chamado de conformação mecânica e nele existe uma chapa plana que passa a ser submetida a diversos cortes para que adquira nova forma geométrica.

Software ponta a ponta, o que pode oferecer

Se você precisa saber mais sobre projeto de estampo: como garantir a confiabilidade no seu processo de ponta a ponta, veja o que esse tipo de ferramenta pode oferecer em cada etapa da produção:

 

  • Orçamento

Na etapa do orçamento, o software que realiza o processo completo de ponta a ponta, totalmente automatizado fornece desenvolvimento do produto, etapa do blank e a tira, baseado na especificação do material escolhido pelo cliente e na espessura necessária. A força utilizada pelos cilindros de nitrogênios, molas, quantidade de aço, dados de tempo de usinagem e eletroerosão a fio também podem ser orçados com maior precisão para evitar erros de cálculo.

 

  • Simulação CAE

CAE é a abreviação para Engenharia Auxiliada por Computador que significa utilizar softwares para simular desempenho. Quanto mais precisa for a simulação, menor a possibilidade de erros de orçamentos e de necessidade de retrabalho.

A simulação CAE envolve etapas como otimização dos produtos, economia, processos e ferramentas de manufatura.

A maioria dos processos de CAE abrange etapas como pré-processamento, solução e etapas após o processo. O pré é a etapa em que os engenheiros estão elaborando o projeto de estampo, ou seja, modelando a geometria da peça através de representações. Nessa fase, o software que utiliza simulação CAE é muito importante para que não haja falhas.

É também na pré etapa que as propriedades físicas do objeto são definidas, o ambiente também pode ser simulado e as cargas que serão aplicadas ao objeto final também precisam ser consideradas.

Na fase do processo em si e na pós produção, os resultados dos modelos são apresentados e poder ser avaliados e modificados de acordo com a necessidade e de acordo com as necessidades de cada cliente e produto.

 

  • Construção

A construção, no software ponta a ponta é feita através de usinagem e apresenta módulos de automação, como AutoDrill e outros.

 

  • Tryout

O Tryout é zero, no entanto, com a adição de Medição de processos antes do tryout é possível evitar que uma peça ruim seja testada, já que ele permite a verificação e o descarte antecipado. Dessa forma pode-se economizar no aluguel da prensa e manutenção.

 

  • Medição

Para a medição, o software permite a inspeção.

Assertividade

Se o seu intuito é encontrar uma solução para problemas específicos do seu negócio, utilizar um software específico pode ser a melhor resposta para isso. Optando por essa solução, esse sistema será inteiramente dedicado à sua empresa, aumentando e facilitando a otimização.

Sendo assim, um dos principais benefícios de um software específico é a grande abrangência que ele atinge. Em todos os processos, diferenciais e rotinas da empresa serão incluídos no sistema.

Sendo assim, esse modelo de sistema trará familiaridade para sua equipe, cada vez mais aumentando e melhorando o rendimento, desenvolvimento e desempenho de toda a equipe. Esse é um dos fatores chave para quem pretende trabalhar com projeto de estampos: veja como garantir a confiabilidade no seu processo de ponta a ponta!

Segurança

Quando você opta por desenvolver um software específico para o seu negócio, uma solução certeira é adquira simultaneamente. As necessidades de sua empresa são trabalhadas de forma particular.

Diferente de softwares genéricos, os específicos possuem um alto nível de segurança diferenciado. Mesmo sendo hospedado virtualmente, o software especifico possui um banco de dados e não será compartilhado.

Retorno Financeiro

Uma das maiores preocupações de um gestor é com os investimentos feitos na empresa. Dessa forma, a questão “preço” sempre vem com uma enorme importância. Quando comparam custos e vantagens de um investimento dessa forma.

Um investimento em um software genérico pode parecer vantajoso no início, em razão do baixo custo. No entanto, é bem provável que o mesmo não consiga cumprir todas as necessidades específicas da sua empresa.

Esse fator pode vir a acarretar prejuízos futuros, de uma maneira que force a sua empresa a adquirir um software mais especializado para o seu nicho de negócios. Portanto, para conhecer um projeto de estampos: como garantir a confiabilidade no seu processo de ponta a ponta, não perca de vista o retorno financeiro.

De fato, os softwares específicos possuem um custo um pouco mais alto em relação aos softwares genéricos. Entretanto, ele servirá melhor a sua empresa e seu projeto, servindo todas as necessidades particulares que ela possui.

O custo do projeto, utilizando esse tipo de software será para uma solução certeira que atenderá todas as suas prioridades, e com certeza, vai lhe trazer um alto retorno financeiro.

O que o software certo pode oferecer

Um software ponta a ponta pode oferecer até 70% de redução do tempo no orçamento e garante que quando a ferramenta começa o orçamento já esteja aprovado.

Além disso, na simulação CAE há também uma redução de 70% , o que implica em até 5% do tempo total. Lembrando que isso implica em uma redução alta de custos, já que a simulação CAE custa aproximadamente 800 reais por hora!

Agora que você sabe as vantagens e desvantagens em se obter um software único de ponta a ponta, não perca mais tempo.

[vc_row full_width="stretch_row" css=".vc_custom_1599227630090{background-color: #f4f4f4 !important;}"][vc_column parallax="content-moving" width="2/3"][vc_empty_space][vc_custom_heading text="`{`Webinar`}` Automatizando os projetos de estampos" font_container="tag:h2|text_align:left|color:%238b8b8b" text_transform="cesis_text_transform_uppercase" google_fonts="font_family:Roboto%3A100%2C100italic%2C300%2C300italic%2Cregular%2Citalic%2C500%2C500italic%2C700%2C700italic%2C900%2C900italic|font_style:700%20bold%20regular%3A700%3Anormal"][vc_empty_space][/vc_column][vc_column width="1/3"][vc_empty_space][vc_single_image image="12642" img_size="130x84" alignment="right"][/vc_column][/vc_row][vc_row full_width="stretch_row" css=".vc_custom_1599227630090{background-color: #f4f4f4 !important;}"][vc_column parallax="content-moving"][vc_custom_heading text="Você ainda faz ferramentas de estampo por tentativa e erro?" font_container="tag:h3|text_align:left|color:%238b8b8b" text_transform="cesis_text_transform_uppercase" google_fonts="font_family:Roboto%3A100%2C100italic%2C300%2C300italic%2Cregular%2Citalic%2C500%2C500italic%2C700%2C700italic%2C900%2C900italic|font_style:400%20regular%3A400%3Anormal"][vc_empty_space][/vc_column][/vc_row][vc_row full_width="stretch_row" css=".vc_custom_1599227630090{background-color: #f4f4f4 !important;}"][vc_column parallax="content-moving" width="1/4"][vc_single_image image="14701" img_size="medium" alignment="right"][/vc_column][vc_column width="3/4"][vc_column_text font_size="14"]Muitas tarefas de projeto e preparação de ferramentais não precisam ser manuais e repetitivas. O CIMATRON Die Design, feito pela 3D Systems para maximizar a produtividade do processo de projeto de estampos, oferece uma solução completa e comprovada para os projetistas e fabricantes de ferramentas que podem agilizar atividades que vão desde a cotação até a programação NC.[/vc_column_text][vc_column_text]Pensando nisso,a FIT solucionará as suas dúvidas sobre estampos no webinar Automatizando os projetos de estampos, apresentado pela consultora Amanda Alcantara e pelo técnico em estampos Dimas Xavier.[/vc_column_text][/vc_column][/vc_row][vc_row full_width="stretch_row" css=".vc_custom_1599227630090{background-color: #f4f4f4 !important;}"][vc_column parallax="content-moving" width="2/3"][vc_column_text]

Neste webinar, você verá:
  • Desdobramento e desenvolvimento da tira no produto Damper bracket (apoio de assento) Material: JSC 270
  • Análises de Springback, Ponto de Ruptura e Espessuramento por simulação CAE diretamente por estágio
  • Implantação do catálogo de bases, conjunto de punção e matriz e geração de relatório orçamentário
  • Programação CAM através de templates

[/vc_column_text][vc_column_text]Quando? Quinta-feira, 24 de setembro de 2020, das 10h as 11h.

Você é nosso convidado![/vc_column_text][/vc_column][vc_column width="1/3"][vc_single_image image="14705" img_size="medium" alignment="right"][/vc_column][/vc_row][vc_row full_width="stretch_row" css=".vc_custom_1599227607692{background-color: #ffffff !important;}"][vc_column][vc_empty_space][vc_custom_heading text="Os apresentadores" font_container="tag:h3|font_size:24|text_align:center|color:%238b8b8b|line_height:1.5" text_transform="cesis_text_transform_uppercase" google_fonts="font_family:Roboto%3A100%2C100italic%2C300%2C300italic%2Cregular%2Citalic%2C500%2C500italic%2C700%2C700italic%2C900%2C900italic|font_style:700%20bold%20regular%3A700%3Anormal"][vc_empty_space][/vc_column][/vc_row][vc_row full_width="stretch_row" css=".vc_custom_1599227590659{background-color: #ffffff !important;}"][vc_column width="1/4"][/vc_column][vc_column width="1/4"][vc_single_image image="13458" img_size="150x150" alignment="center"][vc_column_text]

Amanda Alcantara

Novos Projetos | FIT Tecnologia

[/vc_column_text][/vc_column][vc_column width="1/4"][vc_single_image image="7427" img_size="150x150" alignment="center"][vc_column_text]

Dimas Xavier

Aplicação e Suporte | FIT Tecnologia

[/vc_column_text][/vc_column][vc_column width="1/4"][/vc_column][/vc_row][vc_row][vc_column width="1/3"][/vc_column][vc_column width="1/3"][vc_custom_heading text="CADASTRE-SE" font_container="tag:h3|font_size:24|text_align:center|color:%238b8b8b|line_height:1.5" text_transform="cesis_text_transform_uppercase" google_fonts="font_family:Roboto%3A100%2C100italic%2C300%2C300italic%2Cregular%2Citalic%2C500%2C500italic%2C700%2C700italic%2C900%2C900italic|font_style:700%20bold%20regular%3A700%3Anormal"][vc_empty_space][cesis_button button_text="Quero Assistir" link="https://forms.gle/u2SyYSVLmvGysPkK9" target="_blank" button_pos="center" button_size="cesis_button_medium" button_radius="5" button_text_color="#ffffff" button_bg_color="#ff7104" button_border_color="#ff7104"][vc_empty_space][/vc_column][vc_column width="1/3"][/vc_column][/vc_row]

O que é estampagem nós já vimos em outro artigo por aqui, mas só para lembrar o conceito, Estampagem é o processo de fabricação que através da operação de prensagem, corta ou deforma plasticamente chapas metálicas, gerando um produto final com ótimo acabamento.

O processo de estampagem é muito útil em indústrias com produção seriada e com grandes lotes como a automotiva e de eletrodomésticos, por exemplo.

Como em qualquer processo de fabricação, além da matéria-prima, é necessário um conjunto de máquina e ferramenta. No caso da estampagem, a matéria-prima deve se restringir a materiais que possam adquirir o formato de chapas ou fitas como o aço, cobre, alumínio, níquel e zinco.

A máquina utilizada é a prensa que pode adotar tamanhos diversos para atender às necessidades da produção e assim como a prensa tem suas características, a matriz que molda o produto tem o perfil especificado e bem detalhado com o formato e tamanho dimensionados.

As ferramentas podem ser classificadas em três grupos segundo a sua utilização, são elas: Estampo Progressivo, Tandem e Transfer.

Utilização de ferramentas no processo de estampagem

Como é comum em qualquer projeto, alguns fatores devem ser considerados para a concepção de uma ferramenta de estampar, entre elas estão: Dimensão, o material e sua espessura, a qualidade pretendida na peça, cadência e por aí vai uma lista de considerações. Sendo assim, podemos agrupar as ferramentas em três grupos:

Estampo Progressivo

Nesta categoria a prensa é alimentada com a matéria-prima através de um processo automático por bobinas ou do processo manual com tiras de matéria-prima. A chapa é disposta entre a matriz superior e inferior e é alvo de sucessivas operações de corte, dobragem ou estampagem até a obtenção de um produto final. Nesta categoria, acontece uma sequência de produção onde o material avança para a etapa seguinte conforme cada operação finalizada. Em alguns casos, na mesma estação, a peça pode sofrer operações sucessivas.

O comprimento do passo ou do alimentador define a velocidade de avanço da chapa para evitar erros de posicionamento. Este processo oferece:

  • Variedade de perfis em um único processo;
  • Minimização do manuseamento do material;
  • Eficiência e fabricação de baixo custo;
  • Produção de alta velocidade;
  • Operação em baixas tolerâncias;
  • Produção múltipla por operação, podendo atingir entre 600 a 2000 peças por hora.

Estampagem Transfer

Diferentemente do Estampo Progressivo, a categoria Transfer é composta por várias ferramentas que executam as operações individualmente. Elas são montadas em sequência sobre uma base comum e as peças transitam de uma ferramenta para outra, geralmente essa movimentação acontece através de sistemas automáticos ou robôs equipados com garras mecânicas ou pneumáticas.

Este sistema foi desenvolvido para fabricar componentes de forma totalmente automatizada, ou seja, sem a necessidade da utilização de mão de obra. A imagem abaixo ilustra a aplicação dos braços robotizados, responsáveis pelo manuseio total dos componentes estampados.

Créditos da imagem: http://www.mckautomacao.com.br/

Confira algumas das vantagens do processo transfer :

  • Alto rendimento e produtividade;
  • Ocupação reduzida de área;
  • Indicado para processos com alto volume de produção e várias operações sucessivas de conformação e/ou estampagem;
  • Substitui com vantagens os sistemas tradicionais de Estampos Progressivos: menor custo e maior flexibilidade;
  • Substituição do operador proporcionando qualidade, produtividade e extinguindo problemas de segurança e saúde, imunizando a empresa de processos trabalhistas.

Estampagem Tandem

Uma linha de prensas Tandem, como o próprio nome sugere, é constituída por uma distribuição simples de prensas separadas entre si por uma distância comum. Neste tipo de estampagem, existe uma prensa e uma ferramenta individual para cada operação do processo de fabricação. Finalizada uma operação, a peça é movimentada para a prensa seguinte, até ao final da linha onde se obtém o produto final. A ilustração a seguir demonstra a movimentação realizada por braços automatizados de robôs, que não necessitam da interferência humana durante a operação.

Créditos da imagem: http://www.mckautomacao.com.br/

As vantagens do sistema tandem são:

  • São sistemas com configuração mais complexa;
  • Ideal para processos com alto volume de produção e várias operações sucessivas de conformação e/ou estampagem;
  • Substitui com vantagem os sistemas tradicionais de Transfer por barras longitudinais: menor custo e maior flexibilidade;
  • Substituição do operador proporcionando qualidade, produtividade e extinguindo problemas de segurança e saúde, imunizando a empresa de processos trabalhistas.

Embora o investimento em ferramentas e instalação do projeto de estampagem possam parecer altos, o custo de produção e mão-de-obra é reduzido, proporcionando maior lucratividade.

Manutenção

É claro que qualquer equipamento para se manter funcionando com perfeitas condições de qualidade e segurança, devem passar pela manutenção preventiva. Entre os itens que devem ser observados e substituídos de acordo com a necessidade nas prensas de sistema Progressivo, Transfer e Tandem são:

  • Rolamentos;
  • Correias;
  • Peças e componentes mecânicos e elétricos que possam estar danificados;
  • Tratamento químico das peças;
  • Instalação de CLP e IHM;
  • Instalação pneumática;
  • Motores e redutores;
  • Castilhos e colunas;
  • Estrutura (placa inferior e superior);
  • Elastômeros;
  • Molas helicoidais e Molas a gás;
  • Carros deslizantes e Carros aéreos.

 

Normas de segurança

Se você despertou o interesse por implementar este processo em sua empresa, é importante lembrar que todos os equipamentos devem estar em conformidade com as Normas de Segurança NR12, PPRPS e NBR13930. São elas que definem os requisitos e as medidas técnicas de segurança, garantindo a integridade física dos operadores, do maquinário e de outras pessoas que possam ficar expostas a possíveis perigos.

As normas devem ser aplicadas em unidades fabris desde a implementação de prensas simples até de alta complexidade e também de dispositivos auxiliares.

Você sabe como funciona o processo de estamparia de metais?

Imagine produzir geometrias próprias e detalhadas utilizando apenas uma chapa, uma prensa e poucos segundos. Sem soldas, sem cavacos, sem bagunça e com tempo recorde. Isso é Estampagem!

Estampagem é o processo de fabricação, para estamparia de metais, que através da operação de prensagem, corta ou deforma plasticamente chapas metálicas, gerando um produto final com ótimo acabamento. O processo é muito útil em indústrias com produção seriada e com grandes lotes como a automotiva e de eletrodomésticos, por exemplo.

Materiais mais utilizados na estamparia de metais

É claro que não são todos os materiais que podem ser utilizados na estampagem, pode-se utilizar apenas os que são capazes de adquirir o formato de chapas ou fitas, os principais são:

  • Aço
  • Cobre
  • Alumínio
  • Níquel
  • Zinco

Apesar deste tipo de fabricação ter um alto custo de ferramental, inviabilizando a aplicação para pequenos lotes, as vantagens o tornam muito atrativo para várias indústrias, isso porque podem oferecer:

  • Alta produção
  • Baixo custo
  • Ótimo acabamento
  • Maior resistência das peças devido ao encruamento do material
  • Uniformidade da produção: Qualidade

 

A estampagem tem suas vertentes e cada qual tem sua aplicação específica, entre elas estão: Corte, Conformação Mecânica, Repuxo e Estampagem Profunda. Em todos os casos a prensa exerce pressão na chapa que apoiada em uma matriz define o perfil da peça.

Corte

O esforço de compressão exercido pela prensa é convertido em esforço de cisalhamento, cortando ou perfurando o material, produzindo assim, perfis em peças planas.

Algumas peças geralmente produzidas por este meio de fabricação são: Componentes de informática, gabinetes, réguas, painéis de fotos, arruelas ou discos planos.

Conformação Mecânica

Nesta categoria, o material não precisa necessariamente sofrer ruptura, entre as operações estão o dobramento e encurvamento, enrolamento, nervuramento e conformação de tubos.

Exemplos de aplicação de conformação mecânica são a produção de peças rasas como componentes da carroceria de automóveis como capô e portas.

Repuxo

Durante esta operação, o material sofre uma conformação mais intensa de modo que o material sofre estiramento, ou seja, tem sua espessura diminuída para que possa ser moldada no perfil desejado. É importante lembrar que para ser submetido a repuxo, o material deve atender à algumas especificações para que não se rompa. Um exemplo de aplicação são as cubas das pias de cozinha.

Estampagem profunda

Seguindo a mesma linha de raciocínio da Estampagem Rasa, na Estampagem Profunda o copo é mais profundo do que a metade do seu diâmetro. Um exemplo de aplicação dessa estampagem é na produção de panelas.

Fine-Blanking ou Corte Fino

Corte fino e Conformação: é a tecnologia para a produção econômica de peças com precisão de corte.

O processo de corte fino oferece tecnologia de ponta para a produção econômica de peças com precisão de corte e superfícies livres de arestas ou rebarbas (estouro de corte). As peças são produzidas em uma prensa com três forças ativas e em ferramentas de corte com o mínimo de folga, em ângulo reto com superfícies cortantes que não deixam rebarbas ou arestas e são extremamente planas. Elas podem ser utilizadas sem qualquer necessidade de retrabalho ou segunda operação ou processo.

No processo de corte fino, as peças são produzidas em uma prensa com três forças ativas e em ferramentas de corte com o mínimo de folga, em ângulo reto com superfícies cortantes que não deixam rebarbas ou arestas e são extremamente planas. Isso permite que elas sejam utilizadas sem qualquer necessidade de retrabalho ou segunda operação ou processo.

O desenvolvimento de projetos

É claro que para produzir as peças com os perfis desejados, você vai precisar de todo o conjunto mecânico e não somente da matriz em si. Os Estampos são compostos de elementos comuns (Base, cabeçote, colunas de guia e espiga) e de elementos específicos, responsáveis pelo perfil da peça que será produzida (matrizes e punções).

Matrizes

Matrizes e Punções são os elementos fundamentais do ferramental para estampo. Na matriz está recortado o formato negativo do perfil da peça e fixada rigidamente sobre uma base reforçada, formando um conjunto sólido, cujo material é de alta qualidade e acabamento fino. Algumas características que devem ser consideradas no projeto das matrizes de corte são:

  • Ângulo de saída para facilitar o escoamento do material cortado;
  • Folga entre punção e a matriz que é responsável pelo corte da peça desejada;
  • Não devem ter cantos vivos ou raios de arredondamento muito pequenos;
  • Não devem conter variações bruscas de secções nem furos cegos.

Material para Matrizes e Punções

O material para esse ferramental deve ter algumas características específicas, são elas:

  • Devem ser fabricados a partir de ações para trabalho a frio (SAE D-2, D-6, O-1 e S-1);
  • Elevada resistência mecânica;
  • Dureza elevada após tratamento térmico;
  • Resistência ao desgaste;
  • Resistência ao choque;
  • Boa temperatura e usinabilidade;
  • Difícil deformação durante tratamento térmico;
  • A dureza deve ser estar entre 56 a 62 HRC após serem temperadas e revenidas.

 

Outros fatores que devem ser respeitados durante o projeto das matrizes são a fixação e espessura das matrizes.

Definição da Espessura da Matriz

A força proveniente da punção se distribui ao longo dos gumes de corte da matriz, por isso ela precisa ter a espessura adequada para suportar os impactos. Para isso, basta utilizar a equação abaixo para determinação da espessura correta:

E= ∛(F-3)

E= Espessura

F = Força de corte

Se você utilizar para o cálculo a Força de Corte em toneladas, a unidade de medida do resultado da espessura será em centímetros. Caso optar por utilizar a Força em kgf, a unidade de medida do resultado será em milímetros.

Para definir a Força de Corte, basta utilizar a seguinte equação:

Fc≥p.e.tc

Fc = Força de corte [kg]

p = Perímetro da peça a ser cortada [mm]

e = espessura da chapa [mm]

tc = tensão resistente de cisalhamento ou corte [kg/mm²] (conforme cada material)

Fixação

Para que possa ser montada adequadamente no porta-matriz, os tipos de fixação são:

  • Fixação por pressão: <= 1.6mm
  • Fixação por parafuso e extrator fixo: >= 1.6mm

Usinagem da Matriz

A matriz deve ser usinada com extrema estabilidade dimensional, uma ótima opção é o aço VC-131 que é conhecido como indeformável, com resistência à abrasão e máxima estabilidade do gume.

Para a usinagem, o processo de eletroerosão a fio é o mais indicado por permitir usinar geometrias complexas. Através da eletroerosão, um fio de latão eletricamente carregado atravessa a peça submersa em água deionizada, em movimentos constantes, provocando descargas elétricas entre o fio e a peça, as quais cortam o material. Para permitir a passagem do fio é feito previamente um pequeno orifício no material a ser usinado.

A programação do perfil é feita através de sistemas computadorizados, permitindo a obtenção de perfis complexos e precisos.

É importante lembrar que o tratamento térmico tem um papel fundamental, a matriz deve ser submetida à têmpera entre 800°C e 850°C com resfriamento em óleo.

Tryout

Quando modificações ou implementações de processos são realizadas, é importante não esquecer do famoso tryout, que nada mais é que uma série de testes que comprovam a eficiência do novo procedimento.

Durante o tryout acontece a simulação do processo normal de produção e são observadas as características do produto e processo, como ergonomia, tempo de ciclo e qualidade. Apenas após a comprovação testada e aprovada de que o processo é capaz de gerar um produto adequado, é feita a liberação para iniciar a produção sequenciada.

Caso conformidades sejam encontradas, o processo deve ser adaptado e readequado para cumprir todos os pré-requisitos normativos.

Neste artigo iremos analisar a profissão de Projetista de Moldes, Matriz ou Estampos, onde trabalham, quais são suas atribuições, qual o salário destes profissionais e como se tornar um deles.

Esses profissionais trabalham em empresas que são ligadas a fabricação de produtos que envolvem borracha ou plástico, na fabricação de máquinas e equipamentos (moldes de injeção, máquinas de estampo).

Esses trabalhadores atuam, geralmente, em empresas que estão ligadas a fabricação de peças de borracha e plástico, de máquinas e equipamentos (instrumentos médico-hospitalar, artigos de grandes precisões, e para automação das indústrias, até para pequenos objetos como relógios e contadores de tempo), para fabricação de peças para veículos automotores, também para equipamentos que trabalhem com energia elétrica.

Dessa forma podemos observar que este profissional tem uma grande gama de trabalhos que pode realizar.

 

O QUE FAZ UM PROJETISTA DE MOLDES, MATRIZ E FERRAMENTAL?

Quando o assunto é ser um Projetista de Moldes, Matriz ou Estampos é um pouco complexo de se pensar o que realmente faz esse profissional. Então cabe uma ótima pergunta, afinal o que são moldes?

Moldes, conforme definição, são ferramentas de formação de componentes ou peças.

Variando entre suas dimensões, tipos e complexidade de cada molde.

Pensando na sua forma mais rudimentar é composto por duas metades de matriz, cavidade e bucha, são as partes que darão forma a peça que será injetada neste molde.

Os moldes são classificados em questão de tecnologia ou da matéria prima (insumo) que será usada durante o processo de fabricação.

 

Estampos tratam de uma soma de operações que serão executadas na matéria-prima inicial, e ao final do trabalho se obtém um produto acabado com forma e dimensões definidas.

Essas operações acontecem com a ajuda de ferramentas instaladas em prensas de alta pressão.

É um processo a frio que consiste em uma chapa ser colocada sobre uma matriz e recebe uma força que a desloca contra a matriz, fazendo com que a chapa adquira a forma geométrica da matriz.

Projetista de Moldes, Matriz ou Estampos
Após entender o que são moldes, matriz e estampos podemos tratar sobre as atribuições de um Projetista de Moldes, Matriz ou Estampos.

As atribuições de um projetista de moldes inclui: planejar e desenvolver projetos de moldes, matrizes e formas de estampagem; verificar se o projeto é viável para produção; especificar o material utilizado; desenvolver protótipos; fazer o cálculo de custo x benefício; acompanhar os testes práticos e coordenar o trabalho a ser executado; elaborar manual de operação e coordenar novos projetos de Moldes, Matrizes e Estampos.

 

COMO SE TORNAR UM PROJETISTA DE MOLDES?

Algumas das formas de se tornar um Projetista de Moldes, Matriz e Estampos é necessário ter experiência em outros setores da Indústria como ferramenteiro, operador de máquinas de estampo, operador de máquina de corte, desenhista projetista, entre outras áreas semelhantes da indústria.

Para este cargo o tempo de serviço pedido é entre 4 e 5 anos de experiência. Além, claro de domínio de softwares CAD/CAE/CAM, mecânica a nível técnico no mínimo e áreas afins.

Separamos 7 passos de como conseguir ser um Projetista de Moldes, Matriz ou Estampos. São eles:

1. Ter experiência na área de injeção, de corte ou de estampos

O início mais comum na área de Projetista de Moldes é iniciar como operador de máquinas de injeção de plástico e afins, de máquinas de corte ou de estamparia.

Porém obter acesso a este setor de trabalho é necessário ter um curso de mecânica industrial, neste curso serão apresentados como utilizar os equipamentos de proteção individual, leitura e interpretação de desenho técnico, ajuste mecânico, ferramentaria, usinagem em torno e demais matérias do dia a dia.

2. Inicie um curso Superior na área.

Este curso irá fornecer conhecimento aprofundado em desenho técnico, entendimento geométrico e espacial, funções físicas, matemática, simbologia, programas de desenho CAD (Computer Aided Design, por definição é Desenho Assistido por Computador) e ciência dos materiais.

Ter o curso superior fará com que seu desenvolvimento seja melhor visto por seus superiores, gerando mais oportunidade de ser um futuro projetista. Importante verificar se na ementa do curso que irá iniciar tem essas matérias e a qualidade que elas são passadas.

Projetista de Moldes, Matriz ou Estampos

3. Aprenda sobre vários softwares CAD e programas de desenho

No século que estamos vivendo a tecnologia avança rapidamente sendo crucial estar sempre atualizado sobre as novas tecnologias.

Aprenda sobre desenhos bi e tridimensional, sabendo diferenciar seus usos, sempre que possível.

Inclusive os sistemas tridimensionais atuam mais fortemente nas indústrias se tornando quase padrão para certas aplicações. De maneira que os desenhos bidimensionais ainda são muito usuais, para, por exemplo, plantas baixas e sistemas de distribuição elétrica.

4. Aprenda sobre linguagem e simbologia da área em que escolheu.

Este tópico se relaciona quando é necessário indicar onde será feito o corte, o estampo (indicando profundidade, passante ou não) e qual a especificação, apontar qual tipo de soldagem vai ser usada e os métodos, dimensionamentos geométricos e tolerâncias.

5. Estude sobre termodinâmica e mecânica dos materiais.

Saber, de forma profunda, quais são os efeitos térmicos durante a fabricação de peças e seus cortes trará vantagens na hora de fazer um bom projeto de molde.

Contando que o uso correto de canais de resfriamento traz benefícios de acabamento durante a finalização da peça.
A mecânica dos sólidos é usada para saber quais são os pontos térmicos que pode-se trabalhar em um molde, no caso de Estampos, saber a deformação que o material aceita (trabalhar na deformação plástica) sem o rompimento e a tenacidade do mesmo.

6. Converse com quem tem experiência na área.

Pedir dicas de empresas, softwares, sistemas de modelagens e afins. Saber como está o mercado também é tarefa do futuro projetista

7. Se especialize e se atualize constantemente

Para se especializar neste setor é necessário experiência e grande conhecimento de ferramental, moldes, matriz e estampos, portanto o estudo constante de novas ferramentas, conhecer o processo de concepção e montagem.

QUANTO GANHA UM PROJETISTA DE MOLDES

Projetista de Moldes, Matriz ou Estampos


Atualmente, considerando a média nacional, um Projetista de Moldes, Matriz ou Estampos ganha em média R$ 3.518,43 e trabalha cerca de 43 horas semanais de acordo com o CAGED do Ministério do Trabalho e Emprego, avaliando o período de 08/2018 até 03/2019.

O piso salarial médio nacional para um Projetista de Moldes fica em torno de R$ 2.498,00 e entre os maiores valores recebidos está o de R$ 5.317,16. Para esta média são utilizados apenas profissionais com carteira de trabalho assinada e trabalhando em regime CLT.

O salário varia conforme a classificação do profissional entre: júnior, pleno e sênior. Os dois maiores critérios para se avançar nessas classificações é a experiência na área e o nível de escolaridade. Cada empresa separa os profissionais conforme seus próprios critérios, porém existe uma média de experiência e escolaridade entre todas.

  1. Projetista de Moldes Júnior: Possuir experiência de 4 a 5 anos, com no mínimo técnico na área industrial que contemple os conhecimentos necessários para atuar como tal.
  2. Projetista de Moldes Pleno: Possuir experiência de 6 a 7 anos, pode ser pedido graduação em área que contemple os conhecimentos necessários para atuar como Projetista de Moldes, Matriz ou Estampo.
  3. Projetista de Moldes Sênior: Ter 10 anos ou mais de experiência, ser pós-graduado e gestor.

QUAIS EMPRESAS POSSO TRABALHAR COMO PROJETISTA DE MOLDES, MATRIZ OU ESTAMPO?

São vários setores do comércio, indústria e agricultura que necessitam de Projetista de Moldes, entre elas estão: INJEMOLDING, INTECH ENGENHARIA, KOPPE, TAFF INDÚSTRIA DE PLÁSTICOS, PLÁSTICOS ALKO, KARINA PLÁSTICOS, CRW PLÁSTICOS, FÁBRICA BRASILEIRA DE MOLDES FBM, INJEPLASTIC, dentre outras.

Esse profissional também pode trabalhar como Freelancer realizando projeto para várias empresas sem que se crie vínculo empregatício, gerando benefícios para ambos, mantendo o profissional ativo e aprendendo sobre diversas áreas de atuação da indústria.

COMO CONTRATAR ESTE PROFISSIONAL

Projetista de Moldes, Matriz ou Estampos


Para contratar um profissional desta área existem várias formas, porém iremos citar as 2 principais, que são:

1. Contratar uma empresa de Recursos Humanos

Um caminho muito comum para se contratar profissionais de várias áreas, e para desenhistas projetistas de ferramental não seria diferente.

Para este contato é interessante saber se a empresa contratada tem um bom banco de dados dos currículos de profissionais desta área.

2. Usar sites de empregos

Atualmente é um meio muito usado pela facilidade oferecida da forma de contrato desses sites, pois são valores baixos para utilizar os serviços dos mesmos, contendo assim um ótimo custo x benefício para médias e pequenas empresas, que geralmente não possuem um setor de RH que consiga fazer a gestão dos funcionários e a coleta de currículos.

 

Gostou? Acompanhe nossas páginas no Facebook e no LinkedIn e fique por dentro das novidades!

 

O que é CAD CAM?

Para quem não sabe, o acrônimo de CAD CAM é (CAD) “Computer Aided Design” e (CAM) “Computer Assisted Manufacturing”. Ambos são sistemas ​para realizar projetos e fabricações de peças plástica, estampados em metal, calçados, eletrodos, controle de qualidade, etc., com o uso de um computador que permite criar e satisfazer as necessidades de muitas empresas de design gráfico 3D e que também procura controlar máquinas de maneira computadorizada, normalmente chamadas de máquinas NC (Numerical Control) ou CNC (Computer Numerical Control).

Atualmente, o sistema “CAD CAM” é visto como uma disciplina única; enquanto que, quando os dois métodos foram criados, o CAD inicialmente era uma tecnologia de computador proveniente da engenharia, mas a CAM, por outro lado, era vista como uma ciência semiautomática que permitia o domínio das máquinas numericamente.

Desenho assistido por computador “CAD”

É uma ferramenta computacional que beneficia muitos designers, arquitetos e engenheiros, para desenhar coisas em 2D (usa entidades geométricas verticais, como polígonos, arcos, linhas e pontos para operar com uma interface gráfica) e/ou modelagem 3D que permite adicionar sólidos e superfícies. Poderia ser para prototipagem, fabricação, usinagem CNC como moldes, para impressão 3D ou plotagem de desenhos em folhas de papel ou em PDF 3D. O software de projeto CAD é encontrado nas mais diferentes ramos da indústria, incluindo:

  • Automotivo
  • Aeroespacial
  • Dispositivos Médicos
  • Defesa/Militar
  • Embalagens de Alimentos ou para moldes de alimentos (bolachas, doces)
  • Plásticos por Moldes de Injeção
  • Joalheria
  • Instrumentos Musicais
  • Utensílios domésticos

O ambiente CAD é responsável por ajudar a desenhar e modelar objetos para serem fabricados.sketcher esboco desenho 2D Cimatron

Quando usado para construção básica de geometria 2D e peças simples, inclui peças para Router CNC, Plasma, Corte a Laser, Corte a Jato Dágua e Corte a Fio. As geometrias incluem:

  • Pontos
  • Linhas
  • Círculos e Arcos
  • Dimensões
  • Texto

O CAD ajuda criar formas 2D que podem facilmente ser processadas nas máquinas CNC atraves do Código NC ou Codigo G para usinagem. Esta geometria CAD pode ser editada, cortada, espelhada ou copiada para construir uma forma simples ou impressa para fabricação.

Para construção de geometrias mais avançadas e complexas em 3D, incluem peças para fresamento ou torneamento CNC, As geometrias 3D podem incluir:

  • Esferas, cubos, cones, cilindros em sólido primitivomodelagem 3D solido geometria basica
  • Superficies Nurbs
  • Curvas Spline
  • Superfícies Planares e Extrudadas
  • Malha
  • Extensão de superficies (Sweep)

O ambiente CAD permite vocë criar formas 3D bem como editá-las. Um ambiente CAD avançado inclui recursos para projeto mecânico, como completa modelagem em montagem. Bem como moderna modelagem paramétrica, onde cada passo do modelamento é adicionado um item na árvore, o que permite edição de qualquer item, através de seus parâmetros. Se uma alteração é feita a um componente, o modelo inteiro pode ser atualizado facilmente. Outro recurso avançado é a modelagem hibrida, ou seja qualquer geometria em superfícies, sólidos ou curvas podem fazer operações boolenas (adicionar, cortar ou remover) entre elas.

 

“CAM” de fabricação assistida por computador

Por outro lado, o “CAM” de fabricação assistida por computador é uma tecnologia que usa computadores para auxiliar na fabricação de um produto. É usado para transformar uma peça desenhada em uma série de operações de usinagem que podem ser enviadas para uma máquina CNC executar o corte do material bruto, transformando em peça fisica. O software CAM faz parte do sistema de controle de qualidade, administração, programaçãeletrodos usinagem CAM gap orbitalo CNC e planejamento de processos.

Software CAM é utilizado para as seguintes atividades:

  • Associar uma geometria CAD com recursos de usinagem.
  • definir material e ferramentas de corte para usinagem.
  • Criar trajetórias da ferramenta para máquina CNC.
  • Simulação de usinagem, operação por operação, verificando colisões, acabamentos e material remanescente.
  • Pós Processamento para gerar o Código G ou Código ISO
  • Simular a cinemática de uma máquina multi-eixos ( 4 ou 5 Eixos por exemplo)
  • Gerar o relatório de usinagem, com lista de todas ferramentas, setup, posição e tempos de usinagem real.gibbscam torneamento usinagem CNC

Um dos principais usos do CAM é para criar a trajetória de usinagem. Isto é o caminho a qual a ferramenta de corte percorrerá para cortar o material da maneira mais eficiente para ganhar tempo e alcançar o resultado da peça acabada mais próximo possível do desenho desenvolvida no CAD , levando em consideração as tolerâncias e precisão do projeto. Trajetórias de usinagem incluem:

  • Acabamento e Desbaste 2D (chamados de usinagem 2,5 eixos) e 3D
  • Cavidades e Alojamentos
  • Perfis
  • Furação e ciclos como Rosca, Mandrilamento e Calibrar
  • Contornos 3D
  • Redução de Raios
  • Redesbaste ou pré-acabamentos que buscam os materiais remanescentes deixados pela ferramenta anteriorgibbscam fresamento usinagem 5 eixos
  • Faceamento
  • Usinagem em Mergulho
  • Gravação de Textos
  • High Speed Machining (HSM) que seria Usinagem em Alta Velocidade
  • Usinagem em arquivos STL para aplicações artísticas
  • ...

Simulação CAM

A simulação é importante antes de usinagem pois permite ao usuário operador de máquinas analisar as operações antes de realizar o corte no material. Isto reduz o risco e custo de potenciais erros que podem ocorrer, antes de ocorrer. Há outros benefícios que incluem calculo do tempo de usinagem, analise do desvio da peça, verificar o movimento real gerado pelo pós processador.

A simulação com máquina pode também permitir visualizar a cinemática de sua máquina CNC dentro do modo de simulação, evitando assim, qualquer movimento que pode causar fim de curso, colisão entre peça e partes da máquina, peça e ferramenta ou fuso de sua máquina. Tudo é verificado e exibido para o usuário enviar um programa confiável e seguro para usinagem na máquina.

 

USOS DO SISTEMA “CAD CAM”

Os usos mais comuns do sistema CAM são:

  • Fabricação de ferramental (Moldes, Estampos, Matrizes)
  • Inspeção e controle de qualidade
  • Programação para robôs industriais, controle numérico e informatizado
  • Projeto de eletrodos e ferramentas para eletroerosão
  • Planta de distribuição
  • Planejamento de processos
  • Biblioteca de ferramentas de corte com parâmetros de usinagem (Avanço, RPM, Passo Ae e Profundide Ap)

Os usos mais comuns do sistema CAD são:

  • Modelagem de peças em 3D
  • Gerar vistas e todos detalhamento em 2D
  • Suprime a distinção entre planos originais e cópias
  • Projeto de moldes e matrizes para fundição
  • Aumentar a uniformidade do plano
  • Permite obter animações, simulações e realizar análises cinemáticas
  • Permite criar um modelo 3D que pode ser visto de qualquer lado
  • Os dados podem ser transferidos para outros programas para obter apresentações, relatórios e cálculos.

 

BENEFÍCIOS DO SISTEMA CAD CAM

Os principais benefícios do sistema CAM são:

  • Permite obter serviços de produção e planejamento com dados
  • Permite obter uma gestão correta dos processos que verificam o uso efetivo dos dados
  • Permite criar e localizar o set-up de programas NC que facilitam a produção de usinagem eficiente.
  • Permite maximizar as gamas completas de equipamentos de produção, tais como: usinagem por eletroerosão descarga elétrica EDM, máquinas de alta velocidade e furacão.

Os principais benefícios do sistema CAD são:

  • Eles facilitam a produtividade
  • Permite melhorar a qualidade de um produto
  • Reduz os altos custos de desenvolvimento de um produto
  • Dá ao projetista uma melhor visão do produto acabado
  • Diminuir erros nos processos de produção e design
  • Ele permite práticas de design de produto mais eficazes e, por sua vez, permite o uso simples de designs de dados.

 

CAD e CAM na Indústria 4.0

O que é o Indústria 4.0?

O conceito de Indústria 4.0 ou quarta revolução industrial, tem origem na aplicação de tecnologias digitais no ambiente de produção e no valor da cadeia de uma empresa. O princípio básico da Indústria 4.0 é que sistemas e máquinas interconectadas formam uma rede inteligente que cobre toda a cadeia de valor. Abaixo estão vários exemplos de aplicação desses princípios através da cadeia de valor de fabricação. Cada elemento desse processo pode aproveitar os benefícios oferecidos pela Indústria 4.0.

O uso de tecnologias de informação e design que facilitam a conexão entre o mundo físico e o digital permite desde a aplicação de ferramentas de análise de informação obter relações entre dados, até colaboração entre sistemas e dispositivos físicos (conexões máquina-máquina, máquina-produto, máquina -sistema, etc.) para criar a chamada indústria inteligente ou comunicação direta com o usuário final, conseguindo assim a otimização e interação dos processos de pesquisa e desenvolvimento, design, produção, logística e prestação de serviços. Os sistemas CAD CAM são relevantes nesta nova revolução, uma vez que permitirão redesenhar, simular e monitorar os modelos a serem produzidos sem ter que parar uma linha de produção.

 

Como você pode ver, a Indústria 4.0 fornece aos fabricantes uma mudança na maneira de gerenciar seus negócios. À medida que a tecnologia continua avançando, a integração entre a fabricação física e a tecnologia digital inteligente estará pronta para um crescimento mais transformador.

A Indústria 4.0 continuará a promover a crescente informatização CAD / CAM e integração de sistemas industriais. A indústria está evoluindo em uma alta taxa de demanda, na qual os clientes exigem uma produção flexível com foco na manufatura enxuta.

A indústria revolucionária 4.0 exige que todas as máquinas tenham um processo de rede em que o produto seja capaz de modificar o processo, se necessário, a fim de construir uma linha de produção flexível. A modificação CAD CAM on-line de acordo com cada produto específico é uma vantagem para a personalização do produto.

Rua Prof. Altamir Gonçalves, 87
Jardim Gonçalves – Sorocaba/SP
CEP 18016-480
Horário: de segunda à sexta, das 8h às 12 e das 13h às 17h, exceto feriados.
© 2021 Fit Tecnologia. Todos os direitos reservados.
crosschevron-down